Podstawy Astronomii 1 wpływ atmosfery

wyniki ankiet

poprawne odpowiedzi:

• zdania 1-20: min: 9, max: 19, średnia: 14.2, mediana: 16

Wyniki ankiet z minionych lat:

"Jak dobrze znam Wszechświat - ankieta badająca poziom wiedzy astronomicznej" http://www.astro.uni.wroc.pl/index.php/popularyzacja/ankieta-astronomiczna

"Wiedza jak plastik", Urania-PA 3/2019 https://www.urania.edu.pl/sites/default/files/archiwum/urania_2019_03.pdf

"Who are today's astronomy students?", Proceedings of the Polish Astronomical Society, vol. 10, 355-360 (2020) https://www.pta.edu.pl/proc/v10p355

Tranzyt Wenus, 6 czerwca 2012

Światło przechodząc przez atmosferę ulega:

- rozproszeniu i absorpcji
- załamaniu

W efekcie obiekt doznaje:

- spadku jasności widomej (ekstynkcja atmosferyczna)
- pozornej zmiany położenia (refrakcja atmosferyczna)

Wielkość tych zjawisk zależy m.in. od długości drogi światła w atmosferze.

Ekstynkcja atmosferyczna

- Światło (fotony) od gwiazdy (obiektu), ulega rozpraszaniu i absorpcji na atomach molekułach, pyle, kroplach wody, itd. Światło ulega "przygaszeniu" (ekstynkcji).
- Mniej fotonów dociera do obserwatora i jasność widoma gwiazdy wydaje się mniejsza.
- Im dłuższa droga światła w atmosferze, tym mocniejszy efekt osłabienia światła.

- Przyjmijmy, że droga ta dla obiektu w zenicie wynosi s(z = 0) = 1 (z odległość zenitalna)
- I załóżmy, że atmosfera jest płasko-równoległa.

masa powietrzna*:

$$X(z) = \frac{s(z)}{s(z=0)} = \frac{1}{\cos(z)} = \sec(z)$$

jasność widoma po uwzględnieniu ekstynkcji (prawo Bouguer'a):

 $m(z) = m_0 + kX(z)$

m₀ – jasność widoma pozaatmosferyczna,

k – współczynnik ekstynkcji [mag] (podaje, o ile spada jasność gwiazdy w zenicie, m(z=0))

- Współczynnik ekstynkcji zależy od długości fali λ , $k(\lambda)$.
- Całkowita zależność współczynnika ekstynkcji k od długości fali λ jest złożona. Składają się na to różne elementy atmosfery.
 - rozpraszania Rayleigha (na molekułach) zmienia kierunek fotonu po jego spotkaniu z molekułą atmosferyczną, silnie zależy od dł. fali λ ($\propto \frac{1}{\lambda^4}$)
 - rozpraszanie Mie (przez aerozole: pył, sadza, sól morska, smog, i in.) zmienia kierunek fotonu po jego spotkaniu z cząstką aerozolu, słabo zależy od λ ($\propto \frac{1}{\lambda}$)
 - absorbcja przez składniki atmosfery (głównie ozon, tlen, para wodna, dwutlenek węgla) foton jest pochłaniany przez molekułę, zależność od λ jest złożona (wykres poniżej)

Składowe ekstynkcji

- W zakresie widzialnym, przy czystej atmosferze (mało aerozoli) w ekstynkcji dominuje rozpraszanie Rayleigha – silniej rozpraszane są fale krótkie.
- Skutek: widoma jasność w świetle niebieskim będzie bardziej wygaszana niż w czerwonym.
- W efekcie ekstynkcja spowoduje, że obiekt wyda się przyciemniony i poczerwieniony.
- Przykład: Słońce nisko nad horyzontem wydaje się ciemniejsze i ma kolor czerwony. Dodatkowo: ponieważ w świetle rozporoszonym dominuje składowa niebieska, kolor dziennego nieba jest niebieski z²⁵

- Współczynnik ekstynkcji zależy nie tylko od długości fali λ, ale także zmienia się z czasem i kierunkiem na niebie. Zależy też od wysokości nad poziomem morza.
- Zmienna jest zawartość aerozoli i pary wodnej w atmosferze. Mogą występować chmury.
- Przy dużej obfitości aerozoli, w ekstynkcji dominujące staje się rozpraszanie Mie fale krótsze nie są wyraźnie silniej rozpraszanie niż fale długie (dotyczy zakresu widzialnego).
- Skutek: ekstynkcja jest większa niż przy czystej atmosferze, ale nie powoduje tak wyraźnego poczerwienienia.
- Przykład: kolor bezchmurnego nieba przy dużej obfitości aerozoli jest blado niebieski (mniejsza dominacja składowej niebieskiej w świetle rozproszonym)

Narzędzie Sky Atmosphere w Unreal Engine 4 (https://docs.unrealengine.com/4.27/en-US/BuildingWorlds/FogEffects/SkyAtmosphere)

Kolor nieba i światła docierającego do powierzchni planety zależy od cech:

- atmosfery planety i
- gwiazdy, którą okrąża

Słońce + Ziemia

Kolor nieba i światła docierającego do powierzchni planety zależy od cech:

- atmosfery planety i
- gwiazdy, którą okrąża

Średni kolor nieba w zależności od temperatury "powierzchniowej" gwiazdy (dla atmosfery ziemskiej) źródło: markkness.net/colorpy/ColorPy.html

Jak wyznaczyć współczynnik ekstynkcji k oraz jasność pozaatmosferyczną m₀? Wykres przedstawia pomiary jasności gwiazdy wykonywane przez kilka godzin, czyli dla zmieniającej się wartości X(z). Nachylenie dopasowanej do pomiarów prostej określa wartość współczynnika k. Dopasowanie da nam też wartość m₀.

uwaga: taki pomiar można wykonać tylko jeśli k nie zmienia się w czasie; należy unikać pomiarów dla X>3 (z>70°) (silny wpływ niższych warstw atmosfery)

I załóżmy, że atmosfera jest płasko-równoległa...

masa atmosferyczna:
$$X(z) = \frac{1}{\cos(z)} = \sec(z)$$

dla $z \rightarrow 90^{\circ} X \rightarrow \infty$ (niefizyczne)

Problem wynika z błędnego założenia, że atmosfera jest płasko-równoległa. Nie jest.

 Dla rzeczywistej atmosfery (sferycznej, spadek gęstości z wysokością) dostępne są bardziej realistyczne przybliżenia X(z).

jasność widoma po uwzględnieniu ekstynkcji:

 $m(z) = m_0 + kX(z)$

 m_0 – jasność widoma pozaatmosferyczna,

k – współczynnik ekstynkcji [mag] (podaje, o ile spada jasność gwiazdy w zenicie, m(z=0))

Przykład:

Gwiazda ma $m_0 = 5.7$ mag. Przyjmujemy wartość k = 0.2 mag. Do jakiej wysokości nad horyzontem gwiazda nie jest widoczna dla oka nieuzbrojonego na skutek ekstynkcji? Jasność graniczna wynosi 6.5 mag.

Odległość zenitalna dla jakiej ekstynkcja osłabia jasność gwiazdy do 6.5 mag.:

 $6.5 = 5.7 + 0.2 \cdot X(z)$ X(z) = 4.0

Przy takim X możemy skorzystać z przybliżenia płasko-równoległego*.

 $X(z) = 4.0 = \sec(z) \rightarrow z = 75^{\circ}.5 \rightarrow h = 14^{\circ}.5$

Wniosek: poniżej $h = 14^{\circ}$. 5 gwiazdy gołym okiem nie zobaczymy.

* - przybliżenie jest użyteczne do odległości zenitalnej około 75° (X około 4).

 Przejście wiązki światła przez granicę ośrodków o różnej prędkości światła powoduje zmianę kierunku propagacji tej wiązki (załamanie, refrakcja, refraction).

Wielkość załamania określa prawo Snelliusa.

$$n_1\sin(\theta_1) = n_2\sin(\theta_2)$$

 n_1 , n_2 – współczynniki załamania światła w danym ośrodku, θ_1 , θ_2 – kąty padania Zwykle ośrodki o większej gęstości mają większy współczynnik załamania (powietrze – woda, próżnia – powietrze), ale nie jest to regułą.

- Zakładamy, że atmosfera jest płasko-równoległa i składa się z jednej jednorodnej warstwy
- Prawo Snelliusa

$$n_p \sin(\theta_p) = n_a \sin(\theta_a)$$

 $n_p=1.0$ (próżnia), $n_a=1.000278$ (atmosfera), stąd $heta_p> heta_a$

Efekt: gwiazda (obiekt) będzie widoczna pozornie na wyższej wysokości h (wysokość pozorna) niż wysokość prawdziwa h_0 (bez atmosfery):

O ile refrakcja zmienia położenie obiektów?

- Przyjmujemy, że gęstość atmosfery spada z wysokością nad powierzchnią Ziemi.
- Możemy ją podzielić na m jednorodnych warstw o gęstości spadającej z wysokością n.p.m.
 Dla kolejnych sąsiednich warstw:

 $n_0 \sin(z_0) = n_1 \sin(z_1)$ $n_1 \sin(z_1) = n_2 \sin(z_2)$ $n_k \sin(z_k) = n_{k+1} \sin(z_{k+1})$ $n_{m-1}\sin(z_{m-1}) = n\sin(z)$ Wstawiamy kolejno równania jedno do drugiego i dostaniemy: $n_0 \sin(z_0) = n \sin(z) \quad (r1)$ $n_0 = 1$ (próżnia) Kąt refrakcji, **R**:

$$R = z_0 - z = h - h_0$$
 (r2)

z – pozorna odległość zenitalna
 z₀ – prawdziwa odległość zenitalna

Wykorzystując równania r1 i r2 możemy zapisać:

 $n \sin(z) = \sin(z_0) = \sin(R + z) = \sin(R)\cos(z) + \sin(z)\cos(R) \approx R\cos(z) + \sin(z)$ zakładamy tu, że R jest małym kątem i wtedy: $\sin(R) \approx R$ [rad], $\cos(R) \approx 1$

 $n \sin(z) \approx R\cos(z) + \sin(z) / \cos(z)$ $n \operatorname{tg}(z) \approx R + \operatorname{tg}(z)$ $R[\operatorname{rad}] \approx (n - 1) tg(z)$ dla atmosfery n = 1.000278 $R[^{\circ}] \approx 0.01593 tg(z)$ $R[''] \approx 57.3 tg(z)$

Uwaga:

dla $z \rightarrow 90^{\circ} R \rightarrow \infty$ (niefizyczne)

To efekt założenia, że atmosfera jest płasko-równoległa. Nie jest.

Powyższa zależność R(z) dobrze sprawdza się dla $z < 70^{\circ}$.

Dla uzyskania bardziej rzeczywistej zależności R(z) należy uwzględnić:

- sferyczny kształt atmosfery
- rzeczywisty spadek gęstości z wysokością n.p.m.
- wpływ temperatury i ciśnienia na gęstość atmosfery
- wpływ wilgotności powietrza.

Przykłady dwóch wyrażeń na R sprawdzających się w pełnym zakresie wysokości nad horyzontem:

Bennett (1982), h – wysokość pozorna w [°], R w [']

$$R(h) = \operatorname{ctg}\left(h + \frac{7.31}{h + 4.4}\right)$$

Sæmundsson, Þorsteinn (1986), h₀ – wysokość prawdziwa w [°], R w [']

$$R(h_0) = 1.02 \operatorname{ctg}\left(h_0 + \frac{10.3}{h_0 + 5.11}\right)$$

Oba wyrażenia obowiązują dla ciśnienia *P*=1010 hPa i temperatury *T*=10 °C. Dla innych temperatur powyższe wyrażenia trzeba pomnożyć przez czynnik:

 $\frac{P}{1010} \frac{283}{273 + T}$ P w [hPa], T w [°C]

Przykład:

Obiekt ma wysokość prawdziwą $h_0 = -0^{\circ}$. 5. Czy po uwzględnieniu refrakcji będzie widoczny nad horyzontem?

Korzystamy z Sæmundsson, Þorsteinn (1986):

$$R(h_0) = 1.02 \operatorname{ctg}\left(h_0 + \frac{10.3}{h_0 + 5.11}\right)$$
$$R = 33'.69 = 0^{\circ}.5615$$

 $h = h_0 + R = 0^{\circ}.0615 = 3'.69$ (obiekt widoczny nad horyzontem*)

Wniosek: refrakcja przyspiesza wschody i opóźnia zachody obiektów.

* uwaga na ekstynkcję i bardziej złożoną rzeczywistość z refrakcją (następny slajd)

Wyższy poziom złożoności:

- Refrakcja zależy od stanu atmosfery na całej długości wiązki światła
- Dla małych wysokości (<5°), a szczególnie dla h≈0°, na wartość R silnie wpływa lokalny (chwilowy) stan niższych warstw atmosfery.
- R dla takich wysokości staje się silnie zmienna i możliwe są jedynie jej zgrubne oszacowania.
 Przez to bardzo dokładne podanie np. momentu wschodu Słońca nie jest możliwe.

Zniekształcenia tarczy Słońca przez refrakcję silnie i chaotycznie zmienną z wysokością nad horyzontem

Refrakcyjna deformacja sierpa księżycowego w trakcje jego zachodu (fot. Petr Horálek)

Refrakcyjna deformacja ścieżek gwiazd w trakcje ich zachodu (fot. Babak Tafreshi, film: youtu.be/E11-07WfdjU) Widoczne są też efekty ekstynkcji: spadek jasności widomej i poczerwienienie nasilają się wraz z malejącą wysokością h

Wyższy poziom złożoności:

 Refrakcja zależy też od dł. fali światła (patrz tabela poniżej). Kąt refrakcji jest większy dla fal krótszych (rozszczepienie/dyspersja atmosferyczna światła). W efekcie rejestrowany obraz obiektu jest rozmyty i posiada "kolorowe obramowanie".

przykłady dyspersji dolna (dohoryzontalna) część obiektu jest bardziej czerwona, górna (dozenitalna) jest bardziej niebieska. (wszystkie zdjęcia mają górną krawędź skierowaną do zenitu)

Wenus

Saturn

horyzont

Atmosfera nie jest środowiskiem stabilnym. Ruchy turbulentne i drobnoskalowe fluktuacje gęstości w atmosferze powodują chaotycznie zmienną refrakcję w mniejszej skali przestrzennej i czasowej. Efektem jest:

- scyntylacja (scintillation) migotanie, chaotyczne zmiany jasności (barwy) obiektu w skali czasowej poniżej 1 s
- seeing (astronomiczny) drobne, chaotyczne przesunięcia prowadzące do rozmycia i zmiennego zniekształcenia obrazu – obiekt wydaje się mniej ostry i falujący

Scyntylacja i seeing zależą od stanu atmosfery, wysokości miejsca obserwacji nad poziomem morza i wysokości obserwowanego obiektu nad horyzontem.

Syriusz – efekty turbulencji atmosferycznej (film dostępny na en.wikipedia.org/wiki/File:Szintillation.Sirius.480.webm)

- Scyntylacja jest zjawiskiem widocznym gołym okiem (migotanie gwiazd).
- Scyntylacja ogranicza możliwości fotometrii naziemnej (powoduje szum w pomiarach).
- Seeing zobaczymy w obserwacjach teleskopowych:
 - przy krótkich czasach ekspozycji (<100 milisekund), obraz gwiazdy składa się z zestawu plamek (animacja na następnym slajdzie)
 - przy dłuższym czasie ekspozycji, te chwilowe, zmienne w czasie plamki zlewają się w rozmyty dysk o większym rozmiarze kątowym
 - miarą seeingu jest rozmiar kątowy tego dysku.
- Seeing jest istotnym ograniczeniem zdolności rozdzielczej obserwacji naziemnych.

Krzywa jasności gwiazdy. Pozorne zmiany jasności wywołane są przez scyntylację. Jasność bez scyntylacji pokazuje prosta linia przerywana.

Gwiazda ε Aql, film w zwolnionym tempie animacja dostępna na: commons.wikimedia.org/wiki/File:Eps_aql_movie_not_2000.gif

Gwiazda ζ Boo. U góry: obraz o bardzo krótkim czasie ekspozycji, na dole: złożenie najlepszych obrazów o krótkiej ekspozycji w celu usunięcia seeingu (tzw. lucky imaging, zobacz: en.wikipedia.org/wiki/Lucky_imaging).

Mars, dobry i zły seeing

Adaptive optics

No Adaptive optics

W celu zminimalizowania efektu seeingu stosuje się optykę adaptacyjną.

Przykład: zdjęcie Neptuna wykonane z włączoną i wyłączoną optyką adaptacyjną na teleskopie VLT.

(na czym polega optyka adaptacyjna? zobacz: en.wikipedia.org/wiki/Adaptive_optics)