

PULSACJE GWIAZDOWE

semestr zimowy 2017/2018

Jadwiga Daszyńska-Daszkiewicz

OPIS ZABURZEŃ

Dany układ możemy opisać na dwa sposoby:

- 1. podając jego stan w danym punkcie przestrzeni,
- 2. opisując zachowanie się danego elementu masy.

Są to odpowiednio opisy Eulera i Lagrange'a.

Opisom tym odpowiadają różne pochodne czasowe:

∂ /∂t – pochodna Eulera, widziana przez stacjonarnego obserwatora

d /dt – pochodna Lagrange'a (Stoksa, materiałowa), śledzimy ruch

Zachodzi między nimi następujący związek:

 $d/dt = \partial /\partial t + \mathbf{v} \cdot \nabla$

gdzie $\mathbf{v} = d\mathbf{r}/dt$

Zaburzenie Eulera - zaburzenie w ustalonym miejscu $f'(\mathbf{r},t) = f(\mathbf{r},t) - f_0(\mathbf{r})$

Zaburzenie Lagrange'a - zaburzenie w danym elemencie $\delta f(\mathbf{r}_0, t) = f(\mathbf{r}, t) - f_0(\mathbf{r}_0)$

Związek miedzy zmiennymi Eulera i Lagrange'a

 $\mathbf{gdzie}\ \boldsymbol{\xi} \equiv \mathbf{r} - \mathbf{r}_0$

podstawowe zasady komutacji:

- 1. 'komutuje z $\partial / \partial t$ oraz ∇
- **2.** δ komutuje z d/dt

Związek między prędkością v, a przesunięciem ξ w przypadku opisu Lagrange'a i Eulera

Jeśli stan niezaburzony jest statyczny ($v_0=0$), to otrzymamy

 $\delta v = v' = \partial \xi / \partial t = d\xi / dt$

samą prędkość przepływu traktujemy jako wielkość I-go rzędu

Dowolne przesunięcie elementu masy $\xi = \sum_{nlm} \xi_{nlm}$

W teorii liniowej zakładamy, że mody nie oddziałują ze sobą i każdy mod możemy badać osobno.

Analiza modów normalnych.

Przesunięcie elementu masy dla pojedynczego modu w układzie współrotującym (przybliżenie zerowej rotacji !)

 $\xi_{\text{nlm}} = r \left[y_{\text{nlm}}(r) Y_{\ell}^{m}(\theta, \phi) e_{r} + z_{\text{nlm}}(r) \nabla_{H} Y_{\ell}^{m}(\theta, \phi) \right] \exp(-i\omega_{n\ell m} t)$

n odpowiada liczbie węzłów spełniających równanie y_{nlm}(r_i)=0, i=1,2,..., n dla r≠0

Składowe przesunięcia Lagrange'a

$$\xi_r = \delta r$$

$$\mathbf{\xi}_{\mathbf{ heta}} = \mathbf{r} \mathbf{\delta} \mathbf{\Theta}$$
 $\mathbf{\xi}_{\mathbf{\phi}} = \mathbf{r} \sin \mathbf{\Theta} \mathbf{\delta} \mathbf{\phi}$

W układzie współrotującym

$$\delta r''(r'', \theta'', \phi'', t) = r'' y_{n\ell m}(r'') Y_{\ell}^{m}(\theta'', \phi'') \exp(\mathrm{i}\omega_{n\ell m}t),$$

$$\delta \theta''(r'', \theta'', \phi'', t) = z_{n\ell m}(r'') \frac{\partial}{\partial \theta''} Y_{\ell}^{m}(\theta'', \phi'') \exp(\mathrm{i}\omega_{n\ell m}t),$$

$$\delta \phi''(r'', \theta'', \phi'', t) = \frac{z_{n\ell m}(r'')}{\sin^2 \theta''} \frac{\partial}{\partial \phi''} Y_{\ell}^{m}(\theta'', \phi'') \exp(\mathrm{i}\omega_{n\ell m}t),$$

W układzie nieruchomym

$$\delta r'(r', \theta', \phi', t) = r' y_{n\ell m}(r') Y_{\ell}^{m}(\theta', \phi' - \Omega t) \exp(\mathrm{i}\omega_{n\ell m}t),$$

$$\delta \theta'(r', \theta', \phi', t) = z_{n\ell m}(r') \frac{\partial}{\partial \theta'} Y_{\ell}^{m}(\theta', \phi' - \Omega t) \exp(\mathrm{i}\omega_{n\ell m}t),$$

$$\delta \phi'(r', \theta', \phi', t) = \frac{z_{n\ell m}(r')}{\sin^2 \theta'} \frac{\partial}{\partial \phi'} Y_{\ell}^{m}(\theta', \phi' - \Omega t) \exp(\mathrm{i}\omega_{n\ell m}t)$$

W układzie obserwatora

$$\begin{split} \delta\theta &= \frac{\partial\theta}{\partial\theta'} \delta\theta' + \frac{\partial\theta}{\partial\phi'} \delta\phi', \\ \delta\phi &= \frac{\partial\phi}{\partial\theta'} \delta\theta' + \frac{\partial\phi}{\partial\phi'} \delta\phi', \\ \frac{\partial}{\partial\theta'} &= \frac{\partial\theta}{\partial\theta'} \frac{\partial}{\partial\theta} + \frac{\partial\phi}{\partial\theta'} \frac{\partial}{\partial\phi}, \\ \frac{\partial}{\partial\phi'} &= \frac{\partial\theta}{\partial\phi'} \frac{\partial}{\partial\theta} + \frac{\partial\phi}{\partial\phi'} \frac{\partial}{\partial\phi}, \\ \sin\theta' &= N(\theta, \phi) \sin\theta. \end{split}$$

W układzie obserwatora

$$\delta r(r,\theta,\phi,t) = r y_{n\ell m}(r) \sum_{k=-\ell}^{\ell} d_{\ell m k}(i) Y_{\ell}^{k}(\theta,\phi) \exp(i(\omega_{n\ell m} - m\Omega)t),$$

$$\delta\theta(r,\theta,\phi,t) = z_{n\ell m}(r) \left[\left(\frac{\partial\theta}{\partial\theta'} \right)^2 \frac{\partial}{\partial\theta} + \frac{\partial\theta}{\partial\theta'} \frac{\partial\phi}{\partial\theta'} \frac{\partial}{\partial\phi} \right] \sum_{k=-\ell}^{\ell} d_{\ell m k}(i) Y_{\ell}^k(\theta,\phi) \exp(\mathrm{i}(\omega_{n\ell m} - m\Omega)t)$$

$$+\frac{z_{n\ell m}(r)}{\sin^2\theta \ N^2(\theta,\phi)} \left[\left(\frac{\partial\theta}{\partial\phi'}\right)^2 \frac{\partial}{\partial\theta} + \frac{\partial\theta}{\partial\phi'} \frac{\partial\phi}{\partial\phi'} \frac{\partial}{\partial\phi} \right] \sum_{k=-\ell}^{\ell} d_{\ell m k}(i) Y_{\ell}^k(\theta,\phi) \exp(\mathrm{i}(\omega_{n\ell m} - m\Omega)t),$$

$$\delta\phi(r,\theta,\phi,t) = z_{n\ell m}(r) \left[\frac{\partial\theta}{\partial\theta'} \frac{\partial\phi}{\partial\theta'} \frac{\partial}{\partial\theta} + \left(\frac{\partial\phi}{\partial\theta'} \right)^2 \frac{\partial}{\partial\phi} \right] \sum_{k=-\ell}^{\ell} d_{\ell m k}(i) Y_{\ell}^k(\theta,\phi) \exp(\mathrm{i}(\omega_{n\ell m} - m\Omega)t)$$

$$+\frac{z_{n\ell m}(r)}{\sin^2\theta \ N^2(\theta,\phi)} \left[\frac{\partial\theta}{\partial\phi'}\frac{\partial\phi}{\partial\phi'}\frac{\partial}{\partial\theta} + \left(\frac{\partial\phi}{\partial\phi'}\right)^2\frac{\partial}{\partial\phi}\right]\sum_{k=-\ell}^{\ell} d_{\ell mk}(i)Y_{\ell}^k(\theta,\phi)\exp(\mathrm{i}(\omega_{n\ell m}-m\Omega)t).$$

Ponieważ grupa obrotów wokół kątów Eulera jest ortonormalna zachodzą następujące relacje:

$$\left(\frac{\partial\theta}{\partial\theta'}\right)^2 + \frac{1}{\sin^2\theta} \frac{\partial\theta}{N^2(\theta,\phi)} \left(\frac{\partial\theta}{\partial\phi'}\right)^2 = 1,$$

$$\left(\frac{\partial\phi}{\partial\theta'}\right)^2 + \frac{1}{\sin^2\theta} \frac{\partial\theta}{N^2(\theta,\phi)} \left(\frac{\partial\phi}{\partial\phi'}\right)^2 = \frac{1}{\sin^2\theta},$$

$$\frac{\partial\theta}{\partial\theta'} \frac{\partial\phi}{\partial\theta'} + \frac{1}{\sin^2\theta} \frac{\partial\theta}{N^2(\theta,\phi)} \frac{\partial\theta}{\partial\phi'} \frac{\partial\phi}{\partial\phi'} = 0.$$

W układzie obserwatora

$$\delta r(r,\theta,\phi,t) = ry_{n\ell m}(r) \sum_{k=-\ell}^{\ell} d_{\ell m k}(i) Y_{\ell}^{k}(\theta,\phi) \exp(\mathrm{i}(\omega_{n\ell m} - m\Omega)t),$$

$$\delta \theta(r,\theta,\phi,t) = z_{n\ell m}(r) \sum_{k=-\ell}^{\ell} d_{\ell m k}(i) \frac{\partial Y_{\ell}^{k}(\theta,\phi)}{\partial \theta} \exp(\mathrm{i}(\omega_{n\ell m} - m\Omega)t),$$

$$\delta \phi(r,\theta,\phi,t) = \frac{z_{n\ell m}(r)}{\sin^{2}\theta} \sum_{k=-\ell}^{\ell} d_{\ell m k}(i) \frac{\partial Y_{\ell}^{k}(\theta,\phi)}{\partial \phi} \exp(\mathrm{i}(\omega_{n\ell m} - m\Omega)t).$$

W przypadku radialnych pulsacji adiabatycznych zlinearyzowane równania możemy zapisać jako $L_{ad}[\xi]=\omega^{2}\xi$, co wraz z warunkami brzegowymi stanowi zagadnienie typu Sturma-Liouville'a.

L - operator liniowy, w którym funkcje skalarne, występujące jako współczynniki, są niezależne od t, θ i φ.

Czasami zapisujemy L_{ad}[ξ]=0

W zagadnieniu typu S-L spełnione są twierdzenia:

- 1. Istnieje nieskończona liczba wartości własnych ω_n^2 .
- 2. ω_n^2 są rzeczywiste i można je uporządkować następująco: $\omega_0^2 < \omega_1^2 < ..., gdzie \ \omega_n^2 \rightarrow \infty dla n \rightarrow \infty.$
- 3. Funkcja własna y₀ związana z najniższą częstotliwością , ω_0^2 , nie posiada węzłów w przedziale 0<r<R (mod fundamentalny). Dla n>0 funkcja własna y_n ma n węzłów (n-ty overton).
 - 4. Znormalizowane funkcje własne y_n tworzą układ zupełny i spełniają relacje ortonormalności.

W przypadku pulsacji nieradialnych nie mamy już zagadnienia typu Sturma-Liouvilla.

Równianie L[ξ_r]=0 staje się biliniowe w ω_n^2 i ω_n^{-2} i w granicach $\omega_n^2 \rightarrow \infty$ lub $\omega_n^2 \rightarrow 0$ dąży do równanie typu S-L. W przypadku modów nieradialnych mamy dwa rozwiązania:

 $\omega_1^2 < \omega_2^2 < \omega_3^2 < \dots$ mody ciśnieniowe

 $0 < 1/\omega_1^2 < 1/\omega_2^2 < 1/\omega_3^2 < ...$ mody grawitacyjne

v vs. l dla modelu Słońca

J. Christensen-Dalsgaard

Obszary niestabilności pulsacyjnej na diagramie Hertzsprunga-Russella

Handler 2013

Name	Approx. Periods	Discovery/Definition
Mira variables	100 - 1000 d	Fabricius (1596)
Semiregular (SR) variables	20 - 2000 d	Herschel (1782)
δ Cephei stars	1 - 100 d	1784, Pigott, Goodricke (1786)
RR Lyrae stars	0.3 - 3 d	Fleming (1899)
δ Scutistars	0.3 - 6 h	Campbell & Wright (1900)
β Cephei stars	2 - 7 h	Frost (1902)
ZZ Ceti stars (DAV)	2 - 20 min	1964, Landolt (1968)
GW Virginis stars (DOV)	5 - 25 min	McGraw et al. (1979)
Rapidly oscillating Ap (roAp) stars	5 - 25 min	1978, Kurtz (1982)
V777 Herculis stars (DBV)	5 - 20 min	Winget et al. (1982)
Slowly Pulsating B (SPB) stars	0.5 - 3 d	Waelkens & Rufener (1985)
Solar-like oscillators	3 - 15 min	Kjeldsen et al. (1995)
V361 Hydrae stars (sdBVr)	2 - 10 min	1994, Kilkenny et al. (1997)
γ Doradus stars	0.3 - 1.5 d	1995, Kaye et al. (1999)
Solar-like giant oscillators	1 - 18 hr	Frandsen et al. (2002)
V1093 Herculis stars (sdBVs)	1 - 2 hr	Green et al. (2003)
Pulsating subdwarf O star (sdOV)	1 - 2 min	Woudt et al. (2006)

BARDZIEJ KOMPLETNY OBRAZ ...

C. S. Jeffery

TYPY GWIAZD PULSUJĄCYCH

ТҮР	${ m M/M}_{\odot}$	logT _{eff}	P	Mody
Cepheids	4-14	3.7-3.9	1-80 d	rad, nierad?
RR Lyr	0.5-0.7	3.8-3.9	0.1-1.2 d	rad, nierad?
Miry	2-3?	3.3-3.5	80-1500 d	radialne
δ Sct, SX Phe	1.5-2.8	3.8-3.9	0.01-0.3 d	p, g, niskie n
γ Dor	~1.5	3.8-3.85	0.3-1.5 d	g, n>>1
roAp	1.8-2	~3.9	6-15 min	p, n>>1
SPB	3-7	4.1-4.3	0.5-4 d	g, n>>1
β Сер	8-16	4.35-4.5	0.07-0.3 d	p , g
solar type	~1	3.7-3.8	5-16 mir	n p, n>>1
ZZ Cet (DAV)	0.4-0.8	4.05-4.1	1-15 min	g
V777 Her (DBV)	~0.6	4.33-4.4	1-15 min	g, n>>1
GW Vir(DOV+PN	INV) 0.6	4.8-5.2	5-33 min	g, n>>1
V361 Hya (sdB)	<0.5	4.45-4.6	80-600 s	p, low n
V1093 Her (sdB)) <0.5	4.4-4.48	45min- 2h	g, n>>1
sdOv	0.5	4.6 - 5.0	60-160 s	g, n>>1

Hybrid pulsators, np. β Cep/SPB, δ Sct/γ Dor, V361 Hya/V1093 Her

GENERAL CATALOGUE OF VARIABLE STARS http://www.sai.msu.su/gcvs/index.htm

> Przykładowe oznaczenia typów: ACYG, BCEP, DCEP, DSCT, M, RR, RRAB, RV, SR, SXPHE, ZZ

Nazewnictwo gwiazd zmiennych – Friedrich Argelander

Przykładowe krzywe blasku

Mira (o Cet) - pierwsza gwiazda pulsująca odkryta w 1596 przez Davida Fabriciusa.

Mira zmienia jasność obserwowaną od +3.5 do +9 mag z okresem 332 dni.

Cefeidy klasyczne

δ Cephei odkryta przez Goodricka w 1784, P=5.4 d

Cepheid Variable Star in Galaxy M100 HST-WFPC2

RV Tauri

obiekty post-AGB (nadolbrzymy) o małych masach

Występowanie na przemian płytszych i głębszych minimów

- **RVa** nie wykazują zmian średniej jasności
- **RVb** wykazują okresowe zmiany średniej jasności

δ Scuti

Campbell & Writh 1900 Fath, Colacevich 1935

Krzywe blasku v Eridani w pasmach Strömgrena uvy

Fleming 1899

Tvar světelných křivek "a" a "b" u hvězd typu RR Lyrae a b Tvar světelné křivky "c" u hvězd typu RR Lyrae

c c

a,b,c – klasy Baileya (podział ze względu na amplitudę, kształt krzywej blasku i okres pulsacji) a: $\Delta m_V = 1.3$, b: $\Delta m_V = 0.9$, c: $\Delta m_V = 0.5$

RRa i RRb – pulsują w radialnym modzie fundamentalnym i mają asymetryczną krzywą blasku

RRc – pulsują w pierwszym owertonie i mają sinusoidalną krzywą blasku

RRd – dwumodalne, pulsują jednocześnie w modzie fundamentalnym i pierwszym owertonie

RRe (?) – pulsują w drugim owertonie

Dane z misji Kepler: wielomodalne gwiazd RR Lyr

Inna klasyfikacja dotyczy gromad macierzystych:

gromada typu Oosterhoff I - zawiera głównie RRab M3, M5

gromada typu Oosterhoff II − N(Rab)≈N(RRc) ω Cen, M15

Gromady typu Oosterhoff II mają mniej metali

Efekt Błażki (1924) - okresowe zmiany amplitudy i fazy krzywej blasku

Figure 2.16: The Blazhko effect in RR Lyrae: the amplitude of the light variations is modulated with a period of 40.8 days. The lightcurves presented by open, respectively filled dots were measured some 20 days apart.

V777 Her (DBV), PG1351+489

V361 Hya (sdBv), EC 14026

G. Fontaine, P. Brassard 2008, PASP 120, 1043

Henrietta Swan Leavitt (1868–1921) Obserwując w 1908 Cefeidy w MC odkryła zależność okres-jasność, zależność P-L (period -luminosity).

$$log_{10}\left(rac{< L>}{L_{\odot}}
ight) = 1.15 \ log_{10} \prod^{d} + 2.47$$

$$M_{} = -2.80 \ log_{10} \prod^d \ -1.43$$

$$m_V-M_V=5\ log_{10}r-5$$

zależność P-L z 1912

P[d]

Log P

Diagram okres–jasność dla Cefeid klasycznych w LMC

Dane OGLE, Soszyński et al. 2008

W_I - wskaźnik barwy wolny od poczerwienienia

$$W_I = I - 1.55(V - I)$$

STAŁA PULSACJI, Q

$P\sqrt{\rho} = const = Q$

1. Wychodzimy od równanie ruchu

2. Zaburzamy

3. Linearyzujemy

Wynik:

 $P\sqrt{\rho} = [3\pi/G(3\gamma - 4)]^{1/2} = Q$

czyli **P** ~1/ $\sqrt{\rho}$

γ >4/3 - gwiazda oscyluje γ <4/3 – gwiazda zapada się

model δ Cep: M=7 M_{\odot}, R=80 R_{\odot}, ρ ~2*10^{-5} g/cm^3, P=11 d $Q=P\sqrt{\rho}=0.049$

Nadolbrzymy $\rho = 5*10^{-8} \text{ g/cm}^3 \rightarrow P = 220 \text{ d}$

Białe karły $\rho = 10^6 \text{ g/cm}^3 \rightarrow P = 4 \text{ s}$

Jeśli stałą pulsacji zdefiniujemy P√p/p_☉ =Q

to Q ma wymiar czasu

Gaz doskonały, jednoatomowy $\gamma = 5/3$ $P = 0.12^{\circ}(\rho/\rho_{\odot})^{-1/2}$ [d]

Częściowo zjonizowane pierwiastki ciężkie $\gamma = 13/9$ $P = 0.20^* (\rho/\rho_{\odot})^{-1/2}$ [d]

zazwyczaj 0.03 < Q<0.08 [d]

Z równości: $P\sqrt{\rho/\rho_{\odot}} = Q$

wynika zależność okres - jasność - barwa:

$$M_{\text{bol}} - M_{\text{bol}} = -3.33 \log P + 3.33 \log Q - 10 \log T_{\text{eff}} / T_{\text{eff}} + 5 \log g / g_{\odot}$$

lub

$M_{\rm bol} - M_{\rm bol} = -3.33 \log P + 3.33 \log Q - 10 \log T_{\rm eff} / T_{\rm eff} - 1.67 \log M / M_{\odot}$

Zależność ta ma sens statystyczny i może być wyznaczona dla każdej grupy gwiazd pulsujących o zbliżonych cechach fizycznych.

Period - Luminosity Relationship

Fig. 1. Period–luminosity diagrams of variable red giants in the LMC. OSARG variables are shown as blue points (RGB as light blue, AGB as dark blue). Miras and SRVs are marked with pink (O-rich) and red (C-rich) points. Light and dark green points refer to O-rich and C-rich LSP variables, respectively. Yellow points indicate ellipsoidal red giants.

Fig. 3. Period–luminosity diagrams of variable red giants in the SMC. The colors represent the same types of stars as in Fig. 1.

Dane OGLE, Soszyński et al. 2007