BUDOWA I EWOLUCJA GWIAZD

Jadwiga Daszyńska-Daszkiewicz

Semestr letni, 2020/2021

W jaki sposób stojąca do dyspozycji energia całkowita układu może być podzielona między dużą (skończoną) liczbę cząstek?

Rozkład najbardziej prawdopodobny, realizowany w stanie równowagi termodynamicznej, zależy od rodzaju cząstek.

g(±) Mi

Trzy podstawowe rodzaje cząstek

klasyczne – statystyka Maxwella-Boltzmanna

fermiony – statystyka Fermiego-Diraca

bozony – statystyka Bosego-Einsteina

 $n(E) = \frac{q(E)}{(E-\mu)/kT}$ 5. Mexhalla - Boltimenne Cr. Eleman $n(E) = \frac{g(E)}{\sigma^{(E-\mu)/(LT)}} + 1$ Fermon 5. Férmines - Dinene $n(E) = \frac{q(E)}{e^{(E-\mu)/kT}} \Lambda$ bound 5. Borogo - Finsteine

 $p^2 = p_x' + p_g^2 + p_z'$

PJP+dp $n(p)dp = \frac{g(p)}{(E-\mu)/ki} \pm 1 \quad h^{3} dp$ $h = 6_{1}63 \cdot 10^{-27}$ [erg. s] h= ---uttprap h3 ullp², dp $n = \int u(p) dp$ $p=m \cdot m$

E= End = Eo + Ex Fo=mc $F_{qd}^{2} = (mc^{2})^{2} + (pc)^{2}$ $E = mc^{2} \left[1 + \left(\frac{p}{mc} \right)^{2} \right]^{1/2}$ $E_{k} = mc^{2} \left[\left(1 + \left(\frac{p}{mc} \right)^{2} \right]^{1/2} - 1 \right] =$ $= mc \frac{(p/mc)^{2}}{(1 + (f_mc)^{2})^{1/2} + 1}$ $= \frac{p}{m} \frac{1}{\left(1 + \left(\frac{p}{mc}\right)^{2}\right)^{2}} + 1$

Tuc -> 0 1) $f_{k} \simeq \frac{p}{2m}$ 9. merchel. (l) $\overline{t}_{k} = pc$ pmc $\frac{pL}{m} \cdot \frac{mC}{p} = pc$ nic g. relahjirt $\mathcal{N} = \frac{dE}{dp} = \frac{P}{m} \left[1 + \left(\frac{P}{mc}\right)^2 \right]^{1/2}$ p cc mc n) N= m p>)mc N = C 2)

[eng-an] $U = \int_{0}^{\infty} E_{u}(p)m(p)dp$ indopen $\vec{p} \parallel \vec{\sigma}$ $\vec{p} \parallel \vec{\sigma}$ $\vec{r} \cdot \vec{p} = \vec{r} \cdot \vec{p} \times \vec{r} \times \vec{r}$ $P = \int (n x p x) m(p) dp = \frac{1}{3} \int n p dp$ 1) $T = P/m \quad \tilde{E}v = \frac{p^2}{2m}$ per per com $P = \frac{1}{3} \int \frac{p^2}{m} h(p) \frac{p^2}{p}$ $y = \mathcal{U} = \frac{2}{2}P$ $U = \int_{-\infty}^{\infty} \frac{p^2}{2m} m(p) dp$

Ex=pc 2) 19= C p>)mc $P = \frac{1}{2} \int C p n(p) dp$ U=3P) $U = \int pc m(p) dp$ 49

Rozkład Maxwella

 $m(E) \subset d$ $\frac{mc}{kT} \sum \frac{F-\mu}{kT} \approx \frac{mc^{2}-\mu}{KT} + \frac{p^{2}}{2mkT} \sum \frac{1}{Eremc^{2}+p^{2}} \frac{p^{2}}{kT} = \frac{p^{2}}{km} \frac{p^{2}}{kT} = \frac{p^{2}}{km} \frac{p^{2}}{kT} = \frac{p^{2}}{km} \frac{p^{2}}{kT} = \frac{p^{2}}{km} \frac{p^{2}}{kT} = \frac{p^{2}}{kT} \frac{p^{2$ $m = \begin{bmatrix} \infty & -p^2 \beta k m T \end{bmatrix} p^2 dp$ $\int e^{-\alpha x^{2}} e^{-\alpha x^{2}} = \frac{1}{2} [\pi]$

 $m = \left[\frac{4\pi g}{h^3} e^{(\mu - mc^2)/kT}\right] (2mkT)^{3/2} \sqrt{T}$ $\int (p) = \frac{n(p)}{n} = \frac{hp^2}{(2hmT)^{3/2}} \cdot e^{\frac{2\pi hT}{2mhT}}$ $f(\varphi) = \frac{4\pi p^2}{(2\pi kmT)^{3/2}} \cdot e^{-\frac{p^2}{2mkT}}$ $P = \frac{1}{3} \frac{4\pi g}{h^3} e^{(\mu - mc^2)/ki} \cdot \frac{1}{3} \frac{1}{m} \cdot \frac{1}{9} \frac{1}{m} \frac{1}{m} \cdot \frac{1}{9} \frac{1}{m} \frac{1}{m} \cdot \frac{1}{9} \frac{1}{m} \frac{1}{m} \cdot \frac{1}{9} \frac{1}{m} \frac{1}{m}$ nkT

p=nkt U= Zukt $M = \frac{9}{nmH}$ $P = \frac{k pT}{\mu m_{H}} = \frac{p RT}{\mu}$

n - koncentejre

Rozkład Maxwella dla temperatur $T_1 < T_2 < T_3$

Rozkład Maxwella dla różnych cząstek o tej samej T

Widmo Słońca w porównaniu z rozkładem dla ciała doskonale czarnego o $T_{eff}=T_{eff}(Sun)$

 $V_{med} = 0.1^{4}$ $\alpha = 4,565 \cdot 10^{-45}$ [$\sigma v_{0} \cdot cm^{-3} K^{-4}$] Nover = 5 Uner = 5 274 $B_{v}(T)$ $B(T) = \int_{v}^{\infty} B_{v}(T) dv$ $\mathcal{U}_{\mu\nu\sigma} = \frac{1}{c} \left(\frac{B}{B} \right) \frac{1}{2} \frac{1}{2} \frac{1}{c} = \frac{1}{c} \frac{B}{B} \left(\frac{1}{c} \right) \frac{1}{c} \frac$ $b(\tau) = \frac{ac}{u\pi} T^{4}$ $b_{v}(\tau) dv = \frac{c}{u\pi} U_{v} dv = \frac{2h}{c^{2}} \frac{v^{3}}{e^{h^{2}}} dv$ Xmox = cont

P. Wrenne hv) > kT2. Reyleighe-Juense hveckt $B_{v}^{W} \simeq \frac{zhv^{3}}{c^{2}} \exp\left(-\frac{hv}{vt}\right)$ Λ. $\begin{array}{c} \mathbf{P} - \mathbf{J} \\ \mathbf{B} \\ \mathbf{v} \end{array} = \begin{array}{c} \frac{2\mathbf{v}}{\mathbf{v}} \\ \mathbf{v} \\ \mathbf{v} \end{array}$ 2.

Rozkład Fermiego-Diraca

g=2 $s=\pm\frac{1}{2}$ $M_{E}(E) = \frac{2}{(E-\mu)/ki} + 1$ $me = \int me(p)dp = \frac{811}{h^3} \int \frac{p^2 dp}{p(E-\mu)/kT_+ 1}$ $P_e = \frac{1}{8} \int \nabla(\varphi) p n e(\varphi) dp$ Ve= SEu(p)ne(p)dp $\mu = mc^{2} + E_{\mp}$ $E - \mu = E - mc^{2} - E_{\mp} = E_{K} - E_{\mp}$

to LO N.M. $E_{L} \leq E_{F}$ $E_{L} = E_{F}$ EF)) KT p. maly =1 Eu7 Er b. deny 2 ,(Ex-Ex)/kT + 1 -2 Er (Er Eu) IF

Ful 5+ m(E) = 2En 7 EF m(E)=0 $M_e = \frac{811}{h^3} \int_{O} p^2 dp = \frac{811}{3} \left(\frac{p_F}{h}\right)^2$ $\int Me(p) = \frac{8\pi}{h^2} p^3 \qquad p \leq p_F$ $Me(p) = 0 \qquad n > n_F$ $F_{F} = \left(\frac{3n_{e}}{8\pi}\right)^{1/3} \cdot h = \frac{ped}{termes}$

 $S = ne \mu e m_{H} = \mu e m_{H} \frac{8\pi}{75} \left(\frac{1}{h}\right)^{2}$ $F_{u} = mc^{2} \left[\left(1 + \left(\frac{p}{mc}\right)^{2}\right)^{1/2} - 1 \right].$ $\mathcal{D} = \frac{dE}{dp} = \frac{1}{m} \left[\mathcal{A} = \left(\frac{dE}{mc} \right)^{2} \right]^{2}$ Pe= BIT Strand Strand $U_{e} = \frac{8\pi mc^{2}}{h^{3}} \int_{0}^{\infty} \left[1 + \left(\frac{P}{mc}\right)^{1/2} - 1 \right] p^{2} dp$ $X_{T} = \frac{\mu_{T}}{mc}$ X= mr

p= Apre X² f 0,981.10⁶ 9/an⁵ $A = \frac{811}{5} \left(\frac{m_e C}{h}\right)^3 m_H =$ Pe=BS(1+B)1/2 $Ue = 3B \int_{0}^{1} \left[(1+\chi^{2})^{1/2} - 1 \right] \chi^{2} d\chi$ $B = \frac{811}{5} (mc)^{3} mc^{2} = 4,8.10^{4} arg/cm^{3}$

n) $\chi_F LCA$ $P_F LCMC$ gez eleld. ndegen micreliof. χLCA $R_e = \frac{1}{5}B\chi_F =$ $R_e = \frac{1}{5} B \times F = 0,991.10 F_{ye}^{3/3}$ Ue= 3 BX= = 3 Pe p7 Dmc 2) XF 771 X 771 $P_e = 43 \frac{1}{4} = 1,231.00 \frac{150}{4}$ Ue=ZBXF =BRe $g \simeq 10^6$ s/cm^3 X== 1

 $P_{e} = K_{A} \left(\frac{9}{\mu e}\right)^{5/3}$ $P_{e} = K_{2} \left(\frac{9}{\mu e}\right)^{4/3}$ $\frac{gRT}{\mu} = K_{A} g^{5/5}$?≠ (CT)

Rozkład Fermiego-Diraca dla różnych temperatur

* Dla dowolnej temperatury prawdopodobieństwo zapełnienia stanu o energii E_F wynosi 0.5 ! * W T=0K zapełnione są wszystkie stany o energiach niższych od E_F

Przypadki graniczne rozkładu Fermiego-Diraca

$$\begin{aligned} & E < E_f \\ & \frac{E - E_f}{kT} \to -\infty \end{aligned} \begin{cases} f(E) = 1 \\ f(E) = 1 \\ \\ E > E_f \\ & \frac{E - E_f}{kT} \to +\infty \end{cases} \end{cases} f(E) = 0 \\ & \frac{E = E_f}{kT} \\ & \frac{E - E_f}{kT} = 0 \end{cases} f(E) = \frac{1}{2} \end{aligned}$$

Kubiak 1994

Przy wzroście temperatury gazu atomy (elektrony) mogą drgać, ale ciśnienie nie wzrasta, bo cząstki (atomy, elektrony) nie mają gdzie się przesuwać.

Figure 3.2. (left panel) Electron momentum distributions n(p) for an electron density of $n_e = 6 \times 10^{27} \text{ cm}^{-3}$ (corresponding to $\rho = 2 \times 10^4 \text{ g/cm}^{-3}$ if $\mu_e = 2$), and for three different temperatures: $T = 2 \times 10^7 \text{ K}$ (black lines), $2 \times 10^6 \text{ K}$ (red lines) and $2 \times 10^5 \text{ K}$ (blue lines). The actual distributions, governed by quantum mechanics, are shown as solid lines while the Maxwell-Boltzmann distributions for the same n_e and T values are shown as dashed lines. The dotted line n_{max} is the maximum possible number distribution if all quantum states with momentum p are occupied. (right panel) Distributions in the limit T = 0, when all lowest available momenta are fully occupied. The blue line is for the same density as in the left panel, while the red line is for a density two times as high.

Równanie stanu

Schwarzschild 1958

O. Pols

Ze statystyki Maxwella-Boltzmanna można znaleźć stosunek liczby cząstek gazu klasycznego znajdujących się w dwóch różnych stanach energetycznych

$$\frac{N_2}{N_1} = \frac{g_2}{g_1} \exp\left(-\frac{E_2 - E_1}{k_B T}\right) \quad \in \mathcal{F}$$

Jest to rozkład Boltzmanna

Podobnie stosując statystykę M-B można znaleźć stosunek liczby atomów w dwóch różnych stanach jonizacji

$$\frac{n_{i} + 1n_{e}}{n_{i}} = \frac{(2\pi \text{ mkT})^{1.5} \frac{2g_{i} + 1}{g_{i}}}{h^{3}} e^{-\chi/kT}$$

$$\frac{H}{g_{i}} = \chi = \frac{13}{5} G e^{U}$$
Jest to równanie Sahy
$$\frac{1}{10} p_{m} e^{m_{2}} He = \chi = \frac{24}{5} 48e^{U}$$

$$\frac{1}{10} p_{m} He = \chi = \frac{54}{10} 48e^{U}$$

LTE (Local Thermodynamic Equilibrium)

W pewnych warunkach, lokalnie materia i promieniowanie dążą do stanu równowagi termodynamicznej. Wówczas pole promieniowania staje się izotropowe i funkcje rozkładów dla cząstek i fotonów są scharakteryzowane przez tę samą wartość temperatury.

"denie" denen , mappionen, desappy $\overline{I_c} = 15.06 \text{ K}$ $\overline{I_{eff}} \approx 6000 \text{ K}$ $I_{ph} \approx \frac{1}{M_{eff}} = 0.4 \text{ cm}^2/\text{y}$ $\overline{P_{o}} = 1.4 \frac{9}{2}$ $I_{ph} \approx \frac{1}{M_{eff}} = 0.4 \text{ cm}^2/\text{y}$ $\overline{P_{o}} = 1.4 \frac{9}{2}$ $I_{ph} \approx \frac{1}{M_{eff}} = \frac{1}{M_{eff}} \approx \frac{10}{M_{eff}} \approx 10^{4} \text{ K}$

- obsectrenie stenion en. - vorlir ed prodlioni - Man jenine ji - widning mensent

(N. Bolhmone) (N. Moywellia) (~ . Soly) (of. Phondo)

nieprzezroczystość materii

 $\frac{d\tau}{d\tau} = -\frac{3m\rho Lv}{16\pi c T^3 r^2}$

nieprzezroczystość materii, κ_v

średnia droga swobodna dla fotonu o E=hv

$$\bar{l} = \frac{1}{\kappa_{v}\rho}$$

$$\kappa_{v} = \sigma_{v}N$$

$$\kappa_{v} = \sigma_{v}N/\rho \ [\text{cm}^{2}\text{g}^{-1}]$$

$$\kappa_{v} = f(\bar{l}, \rho, \chi_{v}, \gamma)$$

nieprzezroczystość materii, ĸ, zależy od

temperatury

gęstości

składu chemicznego

nieprzezroczystość determinuje transport energii

O nieprzezroczystości decydują różne procesy

przejścia związano-związane

przejścia związano-swobodne

• przejścia swobodno-swobodne

rozpraszanie

$$F_{i,d} = F_{i,d} + \frac{m_e \sigma^2}{2}$$

promy w - w = 1) elosarpoir E + jon + hv = 5e + jon - 2e + jon + hv e = 1 e + jon - 2e + jon + hv e = 1 e + jon - 2e + jon + hvÐ Nr == 2

Morgannai pur et + hV -> et + hV
action + hV -> alea + hV
moleterie
- moleterie
- morganai Thrompsone
hV CC m c²

$$G = \frac{8\pi e^4}{8me^2 c^4} = 6,65.60 am V = compt
- morganain Comptonia
 $\lambda 7 V V$$$

 $e = \frac{uv}{mc^2}$ 2.0 10D m (1+2E) $6_{c} = \frac{2}{4} 6_{-1} \begin{cases} \frac{1+2}{\epsilon^{2}} \left(\frac{2+2\epsilon}{\epsilon^{2}} \right) \\ \frac{1+2\epsilon}{\epsilon^{2}} \\ \frac{1+2\epsilon}{\epsilon^{2}} \end{cases}$ $-\frac{1+3\epsilon}{(1+2\epsilon)^2}$ + <u>fm(1+22)</u> 22

E -70D hv, hvz me modelentech! ~ 74 - ropponin Ræleighe $T_{1}q, Xi, Y$ (M)

Linia przerywana – zakres T i ρ [kg/m³] dla materii słonecznej

Kubiak 1994

O nieprzezroczystości w dziedzinie widzialnej decyduje H⁻ oraz przejścia związano-swobodne w neutralnych jonach wodoru

Kubiak 1994

średnia Rosselanda

$$\frac{1}{\bar{\kappa}} = \frac{\int_0^\infty \frac{1}{\kappa_\nu} \frac{dB_\nu}{dT} d\nu}{\int_0^\infty \frac{dB_\nu}{dT} d\nu}$$

Jeśli
$$\kappa \propto \nu^{-n}$$
 to $\bar{\kappa} \propto T^{-n}$

Taka średnia daje znacznie większy wkład wysokoenergetycznych fotonów

Wysokie temperatury κ =0.02(1+X) (rozp. Thomsona)

Pośrednie temperatury $\kappa = \kappa_1 \rho T^{-3.5}$ (wzór Kramersa)

bardzo niskie temperatury κ =κ₁ρ^{1/2} T ⁴

 $H = M_{4} \approx 10^{-25} 2^{95} 9^{5} 7^{-7} 7^{7}$ $H = 10^{-25} 2^{95} 9^{5} 7^{-7} 7^{7}$

 $M_{cond} = 2,6.10^7 < 247 \frac{T^2}{p^2} \left(1 + \left(\frac{9}{2.0^6} \right)^{24} \right)$ 87, TS (24) - svedni Teatude pour M = (In + 1 mans)

 $H_2 O O$ M = 0.1 Z1.5.W3 < T < 3.103 K

•

Nieprzezroczystość, κ (OPAL), w zależności od logT i log ρ/T_6^3 ($T_6 = T/10^6$)

Pamyatnykh 1999, AcA 49, 119

 $\bar{I} = \{0 - 1, 2 \cdot 10^{6} \text{ K} \ 10^{-1} \text{ M}^{-2} \text{ H}^{+} + e^{-1} \text{ H}^{+} + e^{$ He He +e (1=4,5-5.104K (I=1,5-2,0.10⁵K) obsorpeje men webuse jour medeli, fr. 2 gung Te, prejn w-2w -de-C(U,UI) O(UI,UII) DOB T=10°K

Pamyatnykh 1999, AcA 49, 119

OPAL 1996 Iglesias & Rogers http://opalopacity.llnl.gov/ http://adg.llnl.gov/Research/OPAL/opal.html

OP 2005 Seaton i in. http://opacities.osc.edu/

Low Temperature Rosseland Opacities

Aleksander & Ferguson 2005 http://webs.wichita.edu/physics/opacity/

OPLIB (nowe Los Alamos) Colgan i in. 2013, 2015